Little Blue

File:4th Place - Coyote in Little Bluestem in Red Hills (7469132472).jpg

Coyote in Little Bluestem in Red Hills
by Greg Kramos

“A child said, what is the grass? Fetching it to me with full hands; how could I answer the child?. . . .I do not know what it is any more than he. I guess it must be the flag of my disposition, out of hopeful green stuff woven.”

–Walt Whitman, Leaves of Grass

NCDC USA Drought Map
by Richard Heim

Rain, rain, rain. We’ve had rain on several days the past few months but the Earth is still thirsty! The National Climatic Data Center (NCDC) released September through December’s Palmer Z drought index numbers and 52% of the upper Midwest, Plains, and Western half of the United States are still experiencing drought conditions. Despite the lack of moisture this season, Little bluestem, Schizachyrium scoparium, a native perennial bunchgrass, thrived.

A plant’s metabolism is partially responsible for its survival during extreme weather conditions. Perennial grasses can be classified as either C3 or C4 plants. Classification as a C3 or C4 plant is determined by the metabolic or biochemical pathway the plant uses to capture carbon dioxide during photosynthesis. While the C3 pathway is present in all grass species, the additional C4 pathway evolved in species adapting to very wet or dry habitats. 

The C3 and C4 metabolic pathways are very different from one another. Each pathway is associated with a plant’s growing requirements. Little bluestem is a warm season, sun-loving, short grass species with preference for mesic to dry growing conditions and a C4 metabolism. Much like the weather of 2012, extremely dry growing conditions were experienced during the Great Drought of the 1930s. In 1932, Weaver and Fitzpatrick noted that Schizachyrium scoparium was more drought tolerant than some other prairie grass species found in the plains of North America. More recently, Hake conducted physiological field studies confirming the species-specific drought tolerance of Little bluestem. 

Little bluestem

Little bluestem (Photo credit: Wikipedia)

Global climate change has brought about conditions of drought, high temperatures, and increased levels of nitrogen and carbon dioxide providing C4 plants, like Little bluestem, with a distinct advantage over those possessing the C3 metabolic pathway. In spite of its toughness, Little bluestem’s clumped foliage is delicate and beautiful. Slender, erect, blue-green stems or culms appear in August and reach 2-3 ft. tall by September. The alternate, 1/4 inch wide and 10 in. long leaves are located on the lower part of each culm. In late fall, the culms and leaves turn a rusty-red color and are topped with white tufts of shining seeds. 

Spikelet

Spikelet

The tufts of shining white seeds or spikelets form on 1 1/4 to 3 in. stalks or racemes the end of each culm. Several pairs of spikelets occur on opposite sides of the raceme’s central stem. Between the central stem of each spikelet, long white hairs are produced. Two pairs of spikelets are produced; a sessile, fertile spikelet and a sterile spikelet. The fertile spikelet is about 1/4 in. in length and the sterile spikelet is 1/8 in. in length. Each fertile spikelet produces a single elongated grain. The floret’s anthers are brown to reddish brown and the stigmas are pale purple in color. 

Below the ground, Little bluestem possesses a dense and fibrous root system. Reaching 5 to 8 ft. in depth, the predominantly vertical roots provide both erosion control and protection from drought. Little bluestem has a symbiotic relationship with the fungus, arbuscular mycorrhizae, which improves its supply of water and nutrients. In return, Little bluestem transfers 20% of its plant fixed carbon to the fungus. In light of its erosion control and drought tolerance characteristics, Little bluestem is often used in conjunction with other C4 grasses for prairie restorations and revegetation of abandoned cultivated lands. 

Little bluestem in winter

Little bluestem in winter

An adaptable grass, Little bluestem thrives a wide range of soils and tolerates  harsh growing conditions but prefers neutral to slightly basic sites with deep, shallow, sandy, fine-textured and rocky soils that are characteristically medium to dry, well-drained, and infertile. The plant thrives in full sun but will tolerate light shade. Little bluestem readily seeds itself. Caution should be exercised when planting it in small areas with ideal growing conditions since reseeding can result in Little bluestem becoming the dominate species in the garden. 

Growing conditions, including climate and soil type, have an effect on the geographical distribution of a grass. The Little bluestem range extends throughout all of the lower 48 states except Nevada and are most prominent in the Great Plains and open canopy of the eastern United States. More state specific plant locations can be found on the USDA’s Schizachyrium scoparium distribution map. Common throughout Illinois, Little bluestem’s native habitats include hill, gravel, sand, loam, and clay prairies, scrubby barrens, rocky slopes of thinly wooded bluffs, sandy savannas, hilltop glades, dunes, gravel railroad right of ways, and abandoned fields. 

Little bluestem’s vast geographic distribution also plays an important role in various ecosystems throughout North America. It is the food source and/or cover for songbirds, upland game birds, ground birds, mammals, and insects. During the winter in Illinois, Little bluestem seeds are favored by the Field Sparrow, Tree Sparrow, Slate-Colored Junco, and other small songbirds. Other Illinois avian inhabitants such as the Prairie Chicken, Sharp Tailed Grouse and the quail use the foliage of Little bluestem as nesting material or cover. The foliage of Little bluestem found in Illinois is quite palatable to bison, cattle, White Tailed Deer, and other mammalian herbivores. Ecologists have identified an invaluable relationship between the Little bluestem and insects. Insects are abundant in prairies, providing an ample food source for others higher up in the food chain, birds in particular. Little bluestem’s leaves are the food source for butterflies, skippers, grasshoppers, spittlebugs, leafhoppers, thrips, and beetles. In Illinois, the native grass provides nutrients for Atrytonopsis hiannaHesperia leonardusHesperia meteaHesperia ottoeHesperia sassacusNastra lherminierPolites origenes, numerous grasshopper species,  Prosapia ignipectusFlexamia delongiLaevicephalus unicoloratusIllinothrips rossi, and Aniostena nigrita.

Commonly found in prairies across North America, the ornamental, native bunchgrass, Little bluestem, plays an important role in ecological restorations. Not only does it provide a food source for many native fauna species, it is also a drought resistant native grass, particularly suited for survival in our changing environment. Weather extremes are the new norm throughout the world. This phenomena seems to be born out in an unseasonably warm and dry year in Illinois. Our winter this year has also been warm and dry. In fact, the 2012 National Oceanic and Atmospheric Administration National Climatic Data Center recently stated that the recent year’s weather “…is consistent with what we would expect in a warming world.” Clearly environmental adaptations are necessary for ecosystems to remain sustainable in a warming world. This report will require all gardeners, even native gardeners, and prairie restorationists will need to adapt their plant selections to accommodate the climate change. I plan to do my part to help create a more sustainable landscape by planting a few more Little bluestems in my garden!

Related articles

Resources:

Coucher, T., “Little Bluestem: Schizachyrium scoparium.” Field Guides, eoL: Encyclopedia of Life Learning, Harvard Univerity. N.D. Web. 11 Nov. 2012.

Maricle, Brian R. and Adler, Peter B., “Effects on precipitation and photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie.” Environmental and Experimental Botany. 16 Mar. 2011 Web. 12 Dec. 2012.

Schizachyrium scoparium (Mich.) Nash.” Lady Bird Johnson Wildflower Center. University Texas at Austin. N.D. Web. 12 Sep. 2012.

Hake, D. R. etal.,”Water stress of tallgrass prairie plants in central Oklahoma.” J Range Management, Mar. 1984. Web. 2 Oct. 2012.

Hilty, John. “Little Bluestem.” Illinois Wildflowers. N.P. 2002. Web 10 Nov. 2012.

Steinberg, Peter D. ” Schizahyrium scoparium.” Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. 2002. Web. 24 Jan. 2013.

” Plants Profile, Natural Resources Conservation Service, United States Department of Agriculture. 2002. Web. 1 Jun. 2012.

“State of the Climate Drought Annual 2012.” National Climatic Data Center, National Oceanic and Atmospheric Administration. 1 Jan. 2013. Web. 19 Jan. 2013.

Weaver, J. E. and Albertson, F. W., “Effects of the Great Drought on the Prairies of Iowa, Nebraska, and Kansas”  Agronomy Faculty Publications. 1 Oct. 1936 Web. 1 Sept. 2012.

Weaver, J. E. and Fitzpatrick, T. J., “Ecology and relative importance of the dominants of the tallgrass prairie.”  Botanical Gazette. 1 Apr. 1932 Web. 1 Oct. 2012.

“What are C3 and C4 native grass Species?” NSW Government, Department of Primary Industries: Agriculture.  N.D. Web 1 Nov. 2012 .

Bluejackets to Jello

Ohio Spiderwort Bloom

Bluejacket bud

Ohio Spiderwort, Tradescantia ohiensis, also called Bluejacketis a beautiful native forb that produces one bloom each morning. These forbs bloom constantly and profusely from May through July. The flower of the forb is innately sensitive to the day’s rising temperature and each bloom shrivels, essentially dissolving, into a gelatinous fluid by midday. This sensitivity also allows the flora to act as an environmental indicator, responding to air quality and radiation. The spiderwort’s petals change color from blue to violet in reaction to air quality, with the degree of color change an indicator of the amount pollution in the air. As previously stated, this forb is also a sensitive to radiation, and has been used to detect very low radiation levels in its immediate environment. In response to radiation exposure, the forb’s blue stamens turn pink.

Tradescantia ohiensis

Tradescantia ohiensis (Photo credit: Wikipedia)

This species of spiderwort is a clump-forming, herbaceous native perennial that grows up to 3′ tall with dark bluish-green, arching, unbranched, leaves. Each 1.75 inch wide and 18 inch long vertically-channeled, alternate leaf appears as if it has been folded in half lengthwise as one of a possible eight nodes along a round, smooth or glabrous central stem. The .75 inch to 1.5 inch in diameter, three-petaled, blue flowers occur in a small cluster on the stems at the top of the plant. The forb flowers from late May into early July in the midwestern states and goes dormant in late summer. Each spent flower produces several, tri-sectioned seed capsules that when mature, split into 3 sections, to produce 3-6 oval, brown seeds per capsule. The forb’s root system is thick, fleshy, and fibrous, sending off occasional offshoots nearby making it ideally suited for propagation via root division.

An adaptable plant, Spiderworts tolerate a wide range of growing conditions but prefers moist to medium wet, well-drained, acidic, sandy soil in full sun to part shade. Their leaves respond to harsh weather conditions, competition from other plants, or age by developing brown blotches or becoming yellow in color. Caution should be exercised when planting the Spiderwort in areas with ideal growing conditions since they tend to self-seed and can become somewhat aggressive competition, forming colonies and crowding out other nearby natives. However, it must be noted that when planted in shady conditions, flower production may be less profuse.

Growing conditions, including climate and soil type have an effect on the geographical distribution of a plant. The Ohio Spiderwort is geographically distributed from Ontario south to eastern Texas and eastward to include populations in the midwest as well as northeastern and southeastern states. More statewide specific distribution can be found on the USDA’s Tradescantia ohiensis distribution map. Common throughout Illinois, Ohio Spiderwort’s native habitat includes moist to mesic prairies, black and bur oak savannas, limestone glades, thickets and woodland margins, moist or riverside meadows, and roadside or railroad ditches. Widely scattered, these plants sometimes appear in sizable colonies in disturbed areas. In nature, the Spiderwort is a companion to Big Bluestem, Switchgrass, and Indiangrass as well as Lanceleaf Coreopsis, Bee Balm, Golden Alexander and Pale Purple Coneflower.

Pollination is vital to the survival both the native flora and fauna of an ecosystem. Pollination ecologists have identified several invaluable relationships between the Ohio spiderwort and native fauna. Perhaps the most important relationship is between the forb and bees for they are the predominate pollinators of these flowers as well as most flowering plants. Bees, specifically the long-tongued bees, honey bees, bumblebees and Halictine bees feed on the Spiderwort’s nectar and in the process carry pollen from one Spiderwort flower to another flower of the same species, leading to successful pollination of the forb. Other fauna such as Karner blue butterfly, Syrphid flies, Leaf beetles, White-tailed deer, Cottontail rabbits, Box turtles, snails, and various species of birds use the Spiderworts as a food source, feeding on stray pollen, foliage, or seeds. The non-toxic foliage, particularly its flowers and stems, are added to salads and said to have a flavor similar to asparagus.

Commonly found in prairies, the beautiful Ohio Spiderworts play an important role in ecological restorations. Not only does it provide a food source for many native fauna species it also acts as gauge in determining the health of a habitat. Plant a few spiderworts in your garden to help establish a sustainable landscape!

Resources

“Bumblebee Behavior.” Bumblebee. N.P. 1997. Web. 12 Jul.2012.

“Tradescantia ohiensis Raf.” Lady Bird Johnson Wildflower Center. N.D. University Teas at Austin. N.D. Web. 12 Jul. 2012.

“Tradescantia ohiensis Rafinesque.” Flora of North America. eFloras,  Missouri Botanical Garden & Harvard University Herbaria.  2008. Web. 7 Jul. 2012.

Hilty, John. “Definitions and Line Drawings of Botanical Terminology.” Illinois Wildflowers. N.P. 2002. Web 6 Jul. Web. 2012.

Hilty, John. “Flower-Visiting Insects of the Ohio Spiderowort.” Illinois Wildflowers. N.P. 2002. Web. 6 Jul. Web. 2012.

Hilty, John. “Ohio Spiderwort.” Illinois Wildflowers. 2002 N.P. Web 6 Jul. Web. 2012.

Ichikawa, Sadao. “Somatic Mutatiion Rate in Tradescantia Stamen Hairs at Low Radiation Levels: Finding of Low Doubling Doses of Mutations”The Japanese Journal of Genetics . 47 (6) 1972: 411–421. Web.

Tenaglia, Dan. “Tradescantia ohiensis Raf.” Missouri Plants.  N.P. N.D. Web. 11 Jul. 2012.

Black Energy: cultivar of life

Black Energy

“Land, then, is not merely soil; it is a fountain of energy flowing through a circuit of soils, plants, and animals.”

Aldo Leopold

Most living things depend on the Earth’s skin, soil, for life. Soil is made up of native rocks (45%), organic material (5%), air (25%) and water (25%) but its essential components are clay minerals, humus, as well as plant and microbe metabolites. Plants rely on soil for mechanical and life support, a thermal buffer, a habitat that provides its essential symbiotic organisms, as well as a source of water, toxin neutralizer, and nutrient supply. Clay minerals along with small plant and microbe metabolite molecules provide most of the soil’s nutrients. These chemicals are vital for the conversion of sunlight into energy for plant metabolism, which is responsible for growth. Nitrogen, phosphorus, and potassium are the three major plant nutrients. Soil nutrient levels are determined through soil testing.  Soil analysis will provide the levels of pH, N, K, and P in the soil, as described in a previous post, Tend the Soil .

Plants absorb nitrogen from the soil through their roots in the form of either nitrate ions or ammonium ions.  The absorbed nitrogen is used by the plants  for incorporation into amino acids, nucleic acids, and chlorophyll. Excess nitrogen, can result in rapid, lush growth and a diminished root system. Prairie plants depend on their extensive root system for survival so excess N levels should be avoided.

Many restoration ecologist have also found that fertilizers, specifically increased nitrogen, N, promote competitive invasive species growth in prairie restoration projects. Prairie plants do not need additional nitrogen so there is no need to fertilize them. However, plant growth can be improved with the use of inoculants (microorganisms) but seek the advice of your prairie seed supplier before adding these to your soil.

Soil particularly high in nitrogen can be amended by incorporating organic matter, like straw, into the soil. Cultivation of the organic matter into the soil will reduce the excess nitrogen available to weed and invasive plant seeds. It is however, important to make sure the organic matter is herbicide, grass, and weed seed free. Contact your local University Extension Service for more information on nitrogen reduction in soil.

Clay or humus rich soils act as chemical buffers for a wide variety substances present in the soil that might be responsible from an unfavorable pH. The soil’s buffering property can be either an asset or a detriment to soil depending on how much acid, alkali, pesticides, oil, water, and ions stored in its reservoirs.  Positively speaking, these buffers stabilize the soil against abrupt chemical or physical changes that may adversely affect a plant’s growth. However, the buffers can also store large amounts of undesirable substances, resulting in chemical alteration of the soil’s properties.  Remediation of chemically altered soil properties is a difficult and lengthy process requiring the addition of lime and sphagnum peat or organic mulch for acidic and basic soils, respectively.

Salts containing calcium (Ca2+), magnesium (Mg2+), and potassium (K+), and sodium (Na+) cations are commonly found in soil. The earth’s crust is often the origin of these salts. However, salts also result when rocks weather and their dissolved ions have been carried away by water and deposited on the soil’s surface or accumulate in underground water. Fertilizers, organic amendments, and water runoff also add salts to the soil.

Soil salts dramatically affect soil structure, porosity, and plant-water relations. Decreased soil and plant productivity are a result of increased levels of soil salts. Specifically, seeds will fail to germinate or germinate slowly, and plant growth will be slow and stunted in high salinity soil. High salt concentration in soil will cause the plants to wilt and die, no matter how much they have been watered, because the plant- root salt ion concentration becomes unbalanced, interfering with its ability to effectively draw water from the soil.

Salt affected soils are commonly found in areas where evaporation exceeds precipitation and resulting dissolved salts accumulate, or in areas where runoff or vegetative changes have caused salts to leach and accumulate in low-lying places or areas with low water tables. Soil testing that includes a detailed salinity analysis is required to determine what type of salt build up, if any, is present in your soil. Contact your local University Extension Service for more soil testing information. In Illinois, contact one of the following soil testing labs for information regarding salinity testing capabilities, sample collection protocol and remediation recommendations.

With soil salinity results in hand, one will definitively know whether their soil is salt affected. If the soil analysis reveals a high buildup of salt concentration, the soil will fall into one of three salinic categories: saline, saline-sodic and sodic. The easiest soils to correct are the saline soils; sodic soils are more difficult. Accumulated salts can have adverse effects on soil function and one of the following means can accomplish management and soil remediation:

  • improving soil drainage;
  • leaching salts from the soil with excessive watering;
  • applying mulch to reduce evaporation rate of the soil’s water content;
  • chemical application to reduce the exchangeable sodium content in the soil; and
  • combination of these methods.

Phosphorus, P, the last of the three major plant nutrients to be addressed in this post is also found in soil and water, as well as all living things. This essential nutrient is required by plants and animals for proper energy utilization. Plants use dissolved orthophosphate from the soil. Usually, soil P levels are naturally low. Extreme P deficiencies, determined by soil testing, can be remediated with the addition of either inorganic phosphorus containing fertilizers available from treated rock phosphates or organic phosphorus sources found in animal manures. However, caution must be used when adding additional phosphorus to the soil because industrial and municipal point source discharge and agricultural and urban nonpoint source runoff of phosphorus has resulted in an explosion of competing, nonnative plant populations and algal blooms on nearby streams, lakes and rivers.

 All plants have the basic nutrient needs of nitrogen and phosphorus.  F. Stuart Chapin has found that the nutritional characteristics of wild or native plants are similar to those required by herbaceous crops from fertile habitats. The growth rates for both groups are relative to their nutrient supply. However, native plants respond to moderate nutrient stress through increased root absorption to compensate for the limiting nutrients as well as developing an increased root to shoot ratio, a decreased photosynthetic rate, and decreased reproductive output.

Chapin has found “…where light and water are not unduly limiting, extremely nutrient-deficient sites are dominated by slowly growing stress-tolerant species, nutrient-rich sites by rapidly growing competitive and ruderal species, and intermediate sites by a combination of the two and by plants with intermediate characteristics.”  Native plants have adapted to infertile soils, in fact, this environment is acceptable for these stress-tolerant species, whose slow growth rates are maintained by their low nutrient absorption. Native plant species have the ability to maximize soil nutrients by maintaining a large root biomass and symbiotic relationship with the fungus, mycorrhizae. The slow growth rate of the native plants enables them to maintain nutrient reserves, which helps them to survive periods of low nutrient availability. That being said, it is best to review your soil testing results with your local University Extension Service for soil remediation recommendations.

Soil Testing

Soil Samples

Soil testing results for several sample sites of our restoration project were as follows:

Sampling Area ID #

Date of Sample

Type of Plant Growth

pH

Nitrogen (N)

Phosphorus (P)

Potassium (K)

Feel Test

Comments

1

4/3/12

dandelions, natives, buckthorn

7

low

low

very high

humus odor, fibrous but silky, sticks together when moist

loamy organic

2

4/3/12

dandelions, natives, buckthorn

7

very low

very low

high

floury texture when dry, clod forming

loam

3

4/3/12

Bishop’s wort, natives, buckthorn

7

low

low

very high

dry, clod forming

loam

4

4/3/12

Vinca, thistle, day lily

7

low

low

very high

dry, barely forms to clod when moist

sandy loam

5

4/3/12

Red osier dogwood, grass

8

low

low

high

smooth texture, forms ball when wet

clay

Based on the testing results above, the soil of our restoration site was treated for low nitrogen. To amend the low nitrogen levels, native Purple prairie clover plants, that naturally add nitrogen to the soil, were planted in the restoration area. In addition to treating the low nitrogen content of the soil, the low phosphorous level was also addressed. A small amount of cow manure was added to each hole dug for a native plant plug in a sampling area of the restoration sight. Soil remediation is only recommended when soil testing results indicate an extreme nutrient deficiency that would jeopardize the root development of native plants. Before amending your soil consult your local University for remediation recommendations.

Resources
Buckholtz, Daryl D. and Brown, J.R. Potassium in Missouri Soils. University of Missouri Extension, Oct. 1993. Web. 14 May 2012.
Chapin III, F. Stuart. “The Mineral Nutrition of Wild Plants.” Annual Review of Ecology and Systematics, Vol. 11. (1980), pp. 233-260.
Carroll, Steven B. and Salt, Steven D. Ecology for Gardeners. Timber Press, Inc. Portland, Oregon. 2004.
 Everhart, Eldon.  “How to Change Your Soil’s pH.” Horticultural Home and Pest News. Iowa State University, University Extension. 6 Apr. 1994. Web. 1 May 2012.
 McCauley, Ann.  Jones, Clain. and Jacobsen, Jeff.  “Basic Soil Properties.” Soil and Water Management I, Montana State University Extension Services. 2005. Web. 2 May 2012.
Provin, Tony. and  Pitt, J. L. ” Managing Soil Salinity.” Texas A & M University System. AgriLife Extension. N. D. Web. 19 May 2012.
Sharpley, Andrew. Daniels, Mike. VanDevender, Karl. Slaton, Nathan. “Soil Phosphorus: Management and Recommendations.” University of Arkansas Division of Agriculture.  University of Arkansas Cooperative Extension Services. N. D. Web. 19 May 2012.
Schulte, E.E. and Kelling K.A. “Soil and Applied Potassium.” Understanding Plant Nutrients. University of Wisconsin-Extension, Cooperative Extension. N. D.   Web. 18 May 2012.

Alien Alert

Garlic Mustard

We’ve had an insurgence of alien plants invade our creek side this spring. I have to attribute this new uprising of Garlic Mustard, Alliaria petiolata, to the unseasonably warm winter we’ve had here in Illinois. I imagine, that given that Garlic mustard appears on the noxious weed list for thirty-seven of the fifty states, I am not alone in my mission contain the beast.

It is important for one to know your enemy. Alien identification is critical to eradication!  Gardeners often confuse first year Garlic mustard plants with Wood Violets and the noxious weed, Creeping Charlie.

Wood Violet by Kylee Baumle

Mature garlic mustard surrounded by Creeping Charlie

Creeping Charlie

A description of the adult and yearling plant follows:

 

 

 

 

  • the adult, flowering plant has alternate, heart or triangular shaped, 1 to 3 inch wide, coarsely toothed leaves, and ranges in height from 12 to 48 inches;
  • it produces one or two stems with numerous white flowers that consist of four separate petals;
  • the petioles are longer on the leaves towards the base;
  • a distinctive onion or garlic odor is emitted from the plant when crushed. The olfactory characteristic of this plant helps to distinguish Garlic mustard from all other woodland mustard plants;
  • its taproot is white, slender and often bent in an S-shape near the top;
  • soon after flowering, 1 to 2.5 inches long seed capsules form, quickly lengthening and maturing to produce more than 100 black seeds per plant; and
  • first year plants have wrinkled kidney shaped, scalloped-edged leaves arranged in a cluster of 3 or 4 round, that form a rosette.

Triangular leaf and white flower

Yearling

A complete plant profile is available on United States Department of Agriculture: Natural Resources Conservation Service  web page.

Garlic mustard has been found throughout the northeastern and Midwestern U.S. from Canada to South Carolina and west to Kansas, North Dakota, and as far as Colorado and Utah. Early settlers introduced the plant from Europe onto a new continent, North America, and specifically, the United States. Garlic mustard was brought to the New World because people believed it had medicinal properties. Some settlers even cooked with this cool-season, biennial herb.

Clearly, this alien has occupied our soils for a long time, giving rise to a particular stronghold in the shade of upland and floodplain forests, savannas, yards, and roadsides. Invasion has usually begun along the forest’s edge, with the troops progressing along streams and trails. Light, moisture, nutrients, soil, and space are monopolized by the aggressive Garlic mustard once it has taken hold in an area. Once established, Garlic mustard, a fierce competitor, releases its secret chemical weapon, glucosinolates, into the soil, preventing other, desirable, native woodland wildflowers and trees from flourishing. Aggressive spread of the plant has lead to domination of the forest floor and native herbaceous species displacement within ten years.

Native woodland flora’s survival and the wildlife that depend on them are threatened by garlic mustard invasion. Garlic mustard is spread in two ways: an advancing plant front and population expansion facilitated by animal, flowing water or inadvertent human seed  dispersion. Once dispersed, seeds remain viable for five years. In the Midwest, garlic mustard seeds germinate in early April. Vegetative plant growth begins early in the spring, and flowering from May through early June. Viable seeds are produced within days of initial flowering. Seeds begin to ripen in mid-July, and are disseminated throughout the month of August.

Description: Garlic Mustard (Alliaria petiolat...

Description: Garlic Mustard (Alliaria petiolata), seeds. The numbers on the scale are centimeters. Date: 2005-08-19 (ISO 8601) Author: Björn Appel, Username Warden Licence: GFDL, CC-BY-SA-2.5 or CC-BY-SA-2.0-DE (at your option) Related: Comment: (Photo credit: Wikipedia)

Understanding of the Garlic mustard’s life cycle is key to effective control strategies. Over time, warfare tactics may vary depending on the extent of the invasion. However, after the initial counter insurgence, eradication procedures must be applied for eight or more years to insure that garlic mustard seed bank has been depleted. Each spring, vulnerable areas such as woodlands should be monitored to ensure prompt detection of new invasions and help to prevent re-occurrence. A gardener’s arsenal against Garlic mustard includes:

  • hand pulling followed by bagging and burning or deep burial of the enemy;
  •  decapitation at a height of two to three inches above the soil’s surface before flowering. Follow-up monitoring is required to insure complete enemy elimination;
  • chemical warfare may be needed for instances of extensive infestation. Land-locked, enemy eradication can be accomplished with spring or fall application of a 1% or 2% glyphosate solution. Killzall (TM) and Aqua Master (TM) are safer chemical weapons for use near water; and
  • finally, controlled burns, may be used in the spring to kill the newly germinated seedlings. Permits and certification are usually required to conduct a burn. Contact your local fire control agency for permitting requirements prior to using this method.

Prairie restoration requires gardener’s to engage in warfare against invasive aliens such as Garlic mustard. The battle can be long and intensive, but territory reclamation is vital to the growth of the forest communities’ native plants and animals. Ethically speaking, this is a just war!

Related articles

Resources

Eberhardt, Laurie and Finger, Jonathan. “Mapping and Testing a Possible Control Method for Garlic Mustard (Alliaria petiolata).” Pierce Cedar Creek Institute,   Ecological Society of America presentation, Aug. 2007.

“Garlic Mustard (Alliaria petiolata).” Invasive Species, Wisconsin Department of Natural Resources, 3 Sept. 2004. Web. 26 Apr. 2012.

Pyle, Charlotte. “Alliaria petiolata (M. Bieb.) Cavara & Grande garlic mustard.” Plants Profile, United States Department of Agriculture: Natural Resource Conservation Services, USDA, Oct. 2002. Web. 26 Apr. 2012.

Wikipedia contributors. “Glucosinolate.” Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 28 Mar. 2012. Web. 30 Apr. 2012.

Sun & Rise Over Run


May Apple: Sun - Full to Partial Shade, Soil Moisture-Dry to Medium

In the previous post, Tend the Soil , I focused on one of the three primary factors that affect plant growth in restoration projects, soil conditions. As previously noted, evaluation of all three factors is essential in the creation of a viable restoration plan; the other crucial influences on prairie plant growth are sunlight and site slope topography.

A critical factor to consider when selecting plants for a restoration area is the sunlight exposure. Six to 10 hours of sun a day are needed to sustain prairie plant growth. Some species require full sun to thrive whereas many woodland plants do best in the shade of a woodland tree canopy. Other native plants have the ability to grow in areas with a wide range of sunlight conditions.  According to the Prairie Nursery, sunlight conditions can be divided into four basic levels:

1) full sun: direct sun all day to at least one half day of full sun;
2) partial sun: direct sun for no more than one half day, shaded for at least one half day;
3) partial shade: little or no direct sun, with diffuse light from the edges or through a canopy of tree leaves creates partial shade conditions; and

4) full shade: no direct or diffuse light reaches the ground. A dense canopy of trees completely shades the forest floor. The forest also minimizes wind speeds, protecting woodland plants from excessive drying or physical damage from high winds. The shade of sugar maples, beech, basswood, and dense conifers typify full shade conditions. (Diboll 5)

Ox Eyed Sunflower: Sun- Full, Soil Moisture -Dry, Medium, or Moist

Prairie plant species that have adapted to conditions of high light intensities, heat, wind, and even hail grow in full sun. Native plants that have adapted to growing conditions with low light intensity, but require protection from temperature changes, high winds, and hail thrive in full shade. Plants that prefer the intermediate sunlight conditions between full sun and full shade or partial sun can often tolerate full sun growing conditions in a garden situation that provides some shade or protection for part of the day. Sun-loving plants on the other hand, do not thrive without sufficient sunlight, and therefore, cannot be planted in shady areas. Similarly, shade loving plants only grow in tree canopy protected areas and usually cannot tolerate full sun. Shady prairie areas should be planted with native savanna or woodland species. Both Prairie Nursery and Prairie Moon Nursery offer seed mixes and pre-designed gardens to fit a site’s sun and soil conditions.

Sunlight intensity and soil drainage are also affected by the land’s slope and aspect. Slope refers to the steepness of the land’s surface and aspect refers to the geographical direction the slope faces. No matter what soil type, hilltops and steep slopes tend to be drier than depressions and valleys. In general, slopes increase the rate of the soil’s water drainage affecting the overall soil moisture available to the vegetation.

It is important to note, the greater the slope, the faster the soil drainage, which results in drier the soil. South and west facing slopes will be hotter and drier due to exposure to direct sun and winds in spring and fall for at least part of the day. East facing slopes will generally have more moderate soil conditions, receiving only the cooler morning sun. Cooler and wetter conditions are seen on north facing slopes because they receive direct sun for only a short period of time in mid-summer.

Four unique groups of prairie plants have been created based upon the hydrology or soil moisture level in which the natives grow best: Dry, Medium, Moist, and Wet. These are defined below:

  • dry soils are soils extremely well-drained sandy or rocky in nature and do not hold water and tend to dry out rapidly;
  • medium soils are well drained, loamy and clay-based soils that do not experience standing water;
  • moist soils tend to be damp and may have standing water for a few days in spring or fall. However, the  soil’s surface usually dries out by late spring or early summer, while the subsoil remains moist; and
  • wet soils are damp almost all year round, even in mid-summer. Spring usually brings flooding to wet soils, with standing water remaining  for a week or longer in early spring, but for only a few days in the summer.

A list of prairie and savanna flora associated with soil moisture gradient in the adjacent diagram can be found in the Wisconsin Department of Natural Resources Technical Bulletin number cited below or here. Prairie Nursery also has assembled a list of plant species categorized by soil moisture requirements.

To determine the hydrology and moisture level of the soil, observe site and determine whether the natural state is dry, medium, or wet in nature. Observe the area after rainfall and note whether the site forms puddles, retains water, or  water drains quickly. Decide whether the site in a low-lying area or upland. Make note of any river, lake, or spring is located on the site and its proximity to your restoration site. Compare the sites characteristics to the moisture levels given above to determine the site’s moisture level. Performing a percolation test is an alternative to the previously suggested subjective, soil moisture evaluation.” Water drainage should be one-quarter inch per hour or faster for dry or mesic prairie plants to do well. Plant wet prairie species if your soil drains slower than that. If you have areas that are consistently wet, plan to plant wetland species in that area.” Finally, species moisture requirements differs greatly between dry prairie, mesic prairie, wet prairie, and wetland habitats; select species that will thrive on your site.

In these two consecutive posts, we’ve learned that three main factors determine the growing conditions for a plant; they are 1) soil, 2) sun, and 3) slope aspect. Soil, sun, and slope of the site must be evaluated when selecting plants, since all three of these essential factors determine whether plants will flourish in a certain location. Once a site’s growing conditions have been determined, site specific plants can be selected to match the site.

Related articles

Resources

Cochrane, Theodore and  Iltis, Hugh. Soil moisture gradient and the effect on species composition. Atlas of the Wisconsin Prairie and Savanna Flora, WDNR Technical Bulletin No. 191, 2000. Web. 15 Apr 2012.

Diboll, Neil. “Designing and Planting Your Prairie Garden.” Prairie Nursery, The Productivity Source, LLC., N.D. Web. 13 Apr. 2012.

Diaboll, Neil. “Step By Step Site Analysis Procedures for Developing a Native Landscape Plan.” Prairie Nursery, The Productivity Source, LLC., 2012 Web. 24 Mar 2012.

Kilde, Rebecca. “Going Native: a prairie restoration handbook for Minnesota land owners.” Minnesota Department of Natural Resources, Section of Ecological services Scientific and Natural areas Program, 2000. Web. 15 Apr. 2012.

“An introduction to using native plants in restoration projects.” National Park Service, N.D. Web. 14 Apr. 2012.

Smiley, Thomas E. and Martin, Thomas R. Soil Drainage Analysis and Treatment Considerations. Bartlett Tree Research Laboratories Technical Report. N.P. N.D. Web. 15 Apr. 2012.

 

A Rough Bundle of Brushwood

For me, gardening is a cathartic process. As Hugh Prather aptly said, “I touch the Earth and the Earth touches me.” The Earth and I are connected in a symbiotic relationship. This relationship is nurtured daily in my backyard. Our yard provides us with the opportunity to be an environmental steward 365 days a year. As an environmental steward, I am entrusted to care for the natural environment. I choose to care for the land by planting with a purpose, reestablishing biodiversity in our little piece of the ecosystem, and protecting the creek  from the effects of further streambank erosion. In this post I will focus on streambank stabilization practices that employ nonstructural, bioengineering measures such as fascines or wattles used together with vegetation as the methods of choice for protecting the streambank from further erosion.

Our property is located in the Bull Creek/Bull’s Brook Watershed. In general, watersheds drain the land  into a specific river, lake, or creek. Our land drains into Bull Creek, which then makes its way into the Upper Des Plaines Watershed. Today, much of suburban and urban land is covered with impervious surfaces such as roads and parking lots. These impervious surfaces reduce the soil surface area available to filter the rainwater runoff. The watershed surface’s inability to filter the water poses not only the threat of flooding but also endangering the health of the creek by allowing polluted runoff, including natural pollutants such as sediment, to enter the watershed.

Land Plat with Designated & Divided Restoration Areas in Green

To reduce the threat of  flooding and mitigate polluted runoff, we set out to incorporate streambank stabilization techniques into our riparian/prairie restoration plan. As previously referenced on our “About” page, Integrated Lakes Management (ILM) prepared a riparian evaluation that included site-specific recommendations. One of ILM’s recommendations for stabilization of the steep hill slope on the southeast corner of our property included using a technique referred to as bank shaping. Bank shaping is used to prevent creek undercutting via reduction of the bank’s slope. Earth movers, permits, and a lot of money are needed to facilitate the creation of this gradual drop in land contour along the riparian edge. That being said, this technique is clearly not accomplished by a DIY so we decided to address the erosion problem by building and installing fascines in conjunction with planting deep-rooted vegetation for soil stabilization.

Bioengineering techniques such as fascines or wattles are used to stabilize slopes. Slope stabilization is accomplished by shortening the slope face which results in runoff velocity reduction and an increase in trapped soil erosion particles. This method of streambank stabilization can use either live or dead plant cuttings or a combination of live and dead vegetation or inorganic materials, to produce living, functioning systems that provide habitats, sediment control, as well as prevent hill slope, streambank, and lakeshore erosion. Live fascines are constructed out of a bundle of dormant sandbar willow or dogwood cuttings that take root on the slope in the spring, whereas fascines made of dead, woody branches never take root but provide planting areas by reducing the hillside slope. Given the ample supply of dead brushwood at our disposable, we have chosen to construct and install brushwood fascines as part of our streambank restoration project. Fascine construction was accomplished in the following manner:

  1. Sixty to seventy, 5 to 8 foot long, dead branches with diameters of between 1/2″ and 2″ were gathered from our property to assemble about 10 fascines.
  2. The branches were trimmed to remove side and secondary branches.
  3. Five to eight branches of similar length, but varying diameters, were laid across the yard cart, alternating the orientation of tip to cut end.
  4. The alternating branches were tied together every 1 to 2 feet using non-biodegradable twine to form a bundle or log having a diameter of  around 8 to 10 inches.

Selected Brush Material for Fascine

Trimmed Brush

Tied Brush Bundle

Close Up of tied Brush Bundle

Close Up of Tied Brush Bundle

Installation of the fascines on the cleared, hillside slope was the next order of business. The fascines were  easily installed with the help of a hand shovel, shovel or a pick ax if the soil was particularly heavy, sledge hammer, and a bit of manual labor.

Fascine Drawing

First, a shallow trench was dug into the hillside that runs parallel to contour at the base of the slope. The removed soil was placed on the upslope of the trench. The trench was made deep enough to bury 1/4 to 1/2 of the fascine below the soil surface.  When more than a single fascine was needed to run the length of the trench, the fascines were overlapped to form a seemingly continuous brush bundle. Untreated, eighteen inch, wooden stakes purchased from Lowes were used to anchor the fascines at 2-3 foot intervals. The stakes were pounded into the down-slope soil and angled slightly away from the fascines. For extra stability, wooden stakes were pounded through the middle of the fascine at a 45° angle to the slope,  as well as driven into the up-slope soil and staggered over the down slope stakes pinning the bundle in place. Finally, the up-slope soil from the trench excavation was shoveled back over the top of the fascines and into the trench.

Installing a Fascine

Pinning the Brush Bundle

Additional trenches were dug up-slope of the initial line of fascines. The distance between trenches depends upon the slope of the site and the soil type. Our site has a very, steep slope (1.5 : 1) and loose, arid soil.  Experts recommend that the fascines be installed in rows 3-5 feet apart on loose soil that is very prone to erosion. However, on other sites where the slope is not as steep and soil not so loose, 5-7 feet between rows may be sufficient. Generally speaking, a good rule of thumb is to stand on the first row and dig the next trench as far up the slope as you can comfortably reach. As a result of this trench location method we ended up with fascine rows 2-3 feet apart.

Multiple Fascine Rows

Hopefully, the multiple rows of fascines installed along the steep, creek side slope we will do there job and trap sediment and reduce soil erosion. In addition to the fascines, we have planned on installing deep rooted native grasses and forbs to further stabilize the slope as well as act as a runoff filter. The combination of the fascines and the deep rooted native plantings should go a long way toward restoring, protecting, and sustaining the riparian environment.

  • Ohio Stream Management Guide.ODNR.com. Ohio Department of Natural Resources, n.d. Web.  1 Dec. 2011.
  • Using Stabilization Techniques: to control erosion and protect property.” tva.com. Tennessee Valley Authority, n.d. Web. 30 Nov. 2011.
  • Bull Creek Subdivision Erosion Control Plan.” Waukegan, IL: Integrated Lakes Management,  2009. Print.

If You Build it They Will Come

A Restored Prairie: Liberty Prairie Reserve

Tallgrass prairies that once covered millions of acres of the American Midwest, including Illinois, now cover less than 1% of its original area. Recent interest in prairie restorations and landscaping with native plants have begun to make a bit of progress in re-creating one of the most complex and diverse ecosystems in the world. Native prairie plants are resilient, drought-resistant, and attract many species of native wildlife, including birds and butterflies. For information about butterflies and other insects native to northeastern Illinois, visit Ron Panzer’s website.

Birds and butterflies require three essential elements in their habitat: food, water, and shelter. The natural food, shelter, and water provided by prairie plants will attract the widest variety of birds and butterflies. Another bonus is that prairie plants help to establish a food web where the butterflies and their larval stage caterpillars serve a major food source for birds and other wildlife. So, “if you build it, they will come.”

Knowing that our efforts to re-create a prairie ecosystem would increase the native fauna in our own backyard, made us want to forge quickly ahead! Once we had selected the restoration site, we quickly realized that the project was going to take years to accomplish. As seasoned DIYers, we knew that our dreams and enthusiasm were always greater than our time and endurance, nevertheless, determination to make a positive impact on our environment prevailed. We decided that the restoration project would be much more doable by dividing the designated restoration area into smaller, more manageable portions. Our property’s plat of survey coupled with measurements taken in the designated restoration area shown below in green provided us the dimensions needed to sub-divide the region in to manageable pieces. Once we had selected the sub-site section and prepared the seedbed, the next task was to design the garden.

Land Plat with Designated & Divided Restoration Areas Displayed in Green

Graph paper supplied a grid that helped us accurately design the gardens. The grid system enabled us to map out the size and shape of each sub-section site, as well as plot the site’s other physical features that will influence the prairie garden such as shrubs, trees, or creek. Drawn to scale, the plot’s square footage could be determined. Determination of the site’s area helped us calculate the number of plants and their placement on the site. As a general rule, forbs are to be planted twelve (12) inches on center and grasses planted eighteen (18) to twenty-four (24) inches on center. Below is a layout for sub-section H and a photo of the partially prepared slope.

Restoration Sub-section H Plot

Partially Prepared Sub-section H slope

Proper flora balance is recommended to promote the establishment of adequate ecosystem biodiversity and provide a visually appealing garden year round. Sub-section H has a fairly steep slope, which required the installation of fascines to help limit erosion. Deep-rooted forbs, grasses, and sedges were used in conjunction with the fascines to more permanently stabilize the soil.

We selected most of the plants for our creek side restoration project from those listed in the Native Plant Guide for Streams and Stormwater Facilities in Northeastern Illinois prepared by the USDA Natural Resources and Conservation Services’ Chicago Metro Urban and Community Assistance Office, as well as  Swink and Wilhelm’s book, Plants of the Chicago Region. The USDA guide helped us choose plants that were well matched to our garden’s sun exposure, soil conditions and type. Armed with our garden design it’s now time to build fascines and grow native plant “plugs” for installation in our garden.

Local & national birding information:

Fall Planting: No Mow Grass

I’m just like everybody else in suburbia; I like the lush, green look of a manicured and chemically supported lawn, but hate the time consuming up keep. After spending several, sweltering hours cutting our one-acre lawn I decided there had to be a greener way to achieve the optimum suburban lawn. As if through some divine sign, later that night, while thumbing through the Prairie Nursery catalog, dreaming of fall planting, I came across No-Mow grass seed.

Prairie Nursery’s No-Mow grass was billed as the “ecological alternative to a traditional high maintenance lawn.” When I read the following growing characteristics:

  • requires little water and maintenance once established;
  • forms a dense sod that chokes out weed growth;
  • fertilization or herbicides are not required for optimum performance; and
  • grows in locations with full to partial sun
I was sold on No-Mow grass. Gung ho and ready to join the grass roots, suburban, No-Mow movement I was now in search of a test plot on my own parcel of land. An experimentalist by heart and training, I finally decided after some background research on incorporating the No-Mow as part of our prairie/riparian restoration plan.

Part of our prairie restoration plan included the installation of a three- foot wide walking path and potential firebreak through the prairie garden. I was convinced after reading about No-Mow’s attributes that the grass would provide the perfect ground cover for the path between the native plant plots. Not only was this ground cover alternative naturally permeable, but it required no maintenance! One additional, potential benefit was that No-Mow might also to survive a controlled prairie burn, a method of prairie restoration maintenance. It was time to start planting.

The optimum planting season for No-Mow is fall, between the end of August and the end of October. I ordered my seed and anxiously awaited its arrival. As I waited, I worked on preparing the seedbed using the methods outlined in a previous post titled, Invasives BegonePrairie Nursery’s fall planting instructions suggested that tilling of the seedbed was unnecessary. Despite their recommendation, I turned and raked the soil by hand while awaiting the No-mow’s seed arrival.

Before Invasive Removal

Down to Bare Soil

Fortunately, for me, Illinois’ weather remained unseasonably warm through the end of October because that is when I finally got around to sowing my No-mow grass seed. I broadcast the seed by hand, liberally covering the soil. Next, I gently hand raked the soil to cover the seed with earth. After covering the broadcasted seeds, I proceeded to lightly, overseed the top of the planting area via the “Johnny Appleseed” method. Finally, I walked repeatedly over my newly seed path to firmly implant the seed into the soil.

I watered daily and waited. Approximately ten glorious days later, I began to see a green haze above the surface of the soil. Mission accomplished seed germination was successful! Once germination was complete, I reduced my watering tasks to a biweekly event and enjoyed the continued growth of my tiny No-Mow seedlings. I’m now well on my way to establishing a low maintenance green path in our prairie restoration project.

No-Mow Seedlings

No-Mow Path

Finding the Zone

Riparian zone schematic typical of the Florida...

Riparian Zone Schematic image from Wikipedia

Our neighborhood is a hidden gem in our suburban town. In fact, as I enter the pastoral subdivision, heading down the first of several, rolling hills and then across the meandering creek, I am aware that my breathing slows. The tranquility of the open space seems to bring with it an immediate sense of calm, as if I’ve entered an altered dimension of our hectic world. Devoid of streetlights, we like to joke about the fact the Domino’s Pizza delivery person came to deliver a pizza one, moonless night and a week later has yet to find their way out. Perhaps this magical place, complete with its riparian zone, is our own little ecological utopia.

A riparian zone is a wondrous place in its own right, a place where the land meets a river or creek, supporting one of Earth’s specialized biomes. Water, as well as climate and soil conditions, defines a plant and animal community within the riparian zone. Water is always present in the creek area. Its presence is the most influential force on all the plants and animals that one finds along the creek.

Adaptation to both the water’s excesses in spring and the scarcity in summer is required for all of the plants growing in the riparian zone. Any plant that cannot tolerate having their roots stripped of soil or submerged under water will not grow in a flood zone. Most state EPAs, as well as other countywide soil and water conservation agencies, offer geographically specific publications relating to shoreline plant use, stabilization, and buffer strip practices. Illinois’ EPA offers a web-based publication describing the ecological benefits of creating a natural shoreline buffer, as well as a list of Illinois native plants to be used in the creation of the buffer.

Woodduck photo by Jim Schuler

The animals of the riparian zone are also adapted to the water. Ducks, herons, and minks swim up and down the creek looking for fish as dragonflies zoom overhead. Frogs, crayfish, and turtles swim in the slower areas of the creek in search of aquatic insects. Toads abound along the creek’s edge scrounging for spiders and very small insects. Water striders live on the surface of the water, dancing across the plane of the creek in search of insects and larvae. Aquatic insects are found everywhere, but principally under rocks in areas with current. I marvel at the bucolic ecosystem nature has created and know as I gaze in wonder that it is worth restoring and preserving.

Mink photo by Jim Schuler

The Golden Late Bloomer

Prairie Coreopsis

What a treat, Prairie Coreopsis, aka Stiff Coreopsis, Coreopsis palmata Nutt., produced bright golden-yellow flowers right up until November despite the fact that its bloom time only extends until August. As the temperatures dipped, the uniquely shaped, oppositepalmately three-lobed leaves have begun to turn an orange-purple color. A prolific bloomer, this native forb kept on flowering even during the dog days of summer providing sustenance for bees, wasps, butterflies, moths, and beetles. Not only an entomological delicacy, this overachiever also provided a mammalian treat for the herbivorous rabbits, ground hogs, and deer.

The Prairie Coreopsis spreads via underground rhizomes forming a dense mat, which makes it excellent for stabilizing slopes. We have installed these plants on the upper shoreline zone of our restoration project. Not a finicky native plant, the preferred habitats of this forb include mesic to dry moisture conditions and soil types ranging from black soil prairies, sand prairies, gravelly hill prairies, thickets, rocky upland forests, to Black Oak savannas. Seems like this easy to grow plant could be incorporated into many native gardens across the United States. For more information regarding Prairie Coreopsis and its geographical distribution visit the United States Department of Agriculture: Natural Resources Conservation Service web page.

Coreopsis at Nachusa Grasslands Preserve

%d bloggers like this: